

IceCube Software

Last Modified: February 18, 2004 3:37 pm

File Organization for C
and C++ files in the
IceCube Software
Development

Environment

Simon Patton L.B.N.L.

This documents outline how C and C++ files should be organized so that they can
be used within the IceCube Software Development Environment.

Version:

0.0

Introduction

Page 2

1.0 Introduction

1.1 Purpose

The purpose of this document is to describe how C and C++ files should be organized so
that they can be used within the IceCube Software Development Environment.

The intended audience of this document is C and C++ code developers.

1.2 Scope

The scope of this document is to explain where and why various different C and C++
files should be placed within the structures used within the IceCube Software Develop-
ment Environment.

1.3 References

The following references are used throughout this document.

[IceSoft-xxx] An Introduction to the IceCube Software Development Environment.

1.4 Definitions and Acronyms

package:

A organizational groups of conceptually related files.

platform:

A combination of the operating system and computer architecture for which a
particular build of the code is produced.

project:

A collection of files and resources that are all packaged into a single library file.

1.5 Overview of this Document

The next section...

2.0 Organizational Sub-division of Code

The basic organizational sub-division of code in the IceCube software system is the

project

. All C and C++ files within are project are targeted to the creation of a single
library file or, in the case where Java code is also included in the project, a single library
and single jar file. The name of a project should be unique with IceCube and clearly
identify the responsibilities that the project has assigned.

Within a single project the code can be further divided into packages. If there is more
than one package within a project then the contents of a package is more tightly related
than the overall contents of the enclosing project. The idea of packages has been taken
for the work done on Java development within the Software Environment but, unlike
Java where a package provides a naming and accessibility scope, in C and C++ the idea
of a package is simply an organizations division of the code that does not provide any
special functionality.

Include Files

Page 3

External access to the header file contained in a project is based upon the package which
contained the header file (See 2.0 ‘‘Organizational Sub-division of Code’’). In most
cases a the main interface of a project will be a package with the same name as the
project. However despite this, it is important to remember that the package is the unit of
access. One product of this approach is that the package name within a project should be
unique across

all

 package names with the IceCube software.

Within a project, files are divided into two branches; “public” and “private”. The public
branch of a project contains those files which are available for other projects to use.
These are mostly expected to be include files which define the public interface of the
project. The private branch of a project contains all the other files needed to realize the
project.

3.0 Include Files

The specification of an include file from with a piece of code needs to be unique within
all of IceCube’s software. However the task of ensuring that all include files names are
unique is a daunting, and in the long run impractical one. However by requiring the
name of a package (a much larger unit of granularity) to be unique and then having
include files specified by

<package>/<file>

 then this specification will be unique
within the IceCube software. Moreover experience shows that, especially during early
development, packages often get moved between projects and adoption of this style of
specification means that no code need be modified as a result of this type of transfer.
This means that all

include

 statements should appear in the following form:

#include "<package>/<file>"

The placement of an include file, within the structure of a project, is dictated by a num-
ber of considerations.

•

The package to which the file is assigned.

•

Is the file part of the public interface of the project?

•

Are the contents of the file written of a specific

platform

.

1

.

•

Is the file generated as part of the build process.

Each of these considerations defines part of the path in which the file will be placed.

The easiest way to demonstrate how these considerations define a file’s path is to look at
some examples and then explain the details of how these paths are constructed. Figure 1
shows the storage location for the following example files.

•

FileOne.h

,

FileTwo.h

 and

FileThree.h

belong to

preston

 package in
the

preston

 project.

•

FileFour.h

 and

FileFive.h

 belong to

shaun

 package in the

preston

project.

1.

A platform is defined as the combination of the operating system and computer
architecture for which a build is produced.

Include Files

Page 4

•

FileOne.h

 and

FileThree.h

 are part of the public interface of the

preston

project.

•

FileTwo.h

,

FileFour.h

 and

FileFive.h

 are part of the implementation of
the

preston

 project and thus in its private portion

.

•

The contents of

FileThree.h

 depends on the target platform of the build. There
are version of this file for Linux running on i386 boxes, i.e. to DOM simulation, and
also for the Excalibur evaluation board. This file does not exist for any other plat-
from.

•

FileFive.h

 is also platform dependent, but in this case only the version used on
the Excalibur evaluation board needs to be radically different, all other target plat-
forms can use a single file.

FIGURE 1:

The layout of the include files specified in the text.

preston
 +---+ public
 | +---- preston
 | | +---- FileOne.h
 | +---- Linux-i386
 | | +---- preston
 | | | +---- FileThree.h
 | +---- epax10
 | +---- preston
 | +---- FileThree.h
 + private
 +---- preston
 | +---- FileTwo.h
 +---- shaun
 | +---- FileFour.h
 | +---- FileFive.h
 +---- epax10
 +---- shaun

 +---- FileFive.h

(The auto-generated include files are still under development and so are not shown in
these examples.)

As can be seen in Figure 1, in a normal project the first division of files is into

public

and

private

 directories. This allows the public interface to be published by simply
making the

public

 directory available to other projects. Within either of these directo-
ries files whose contents can be built on any platform are stored in a sub-directory
whose name it that of the package to which the file is assigned. This supports the

<package>/<file>

 specification used by

#include

 statements. However if the
contents of a file can only be built on a specific platform then it needs to be stored in a
package sub-directory which itself lives in sub-directory of the relevant

public

 or

private

 directories that specifies the platform on which that file should be used.

Given this directory structure for files, the search order for include files is the following:

1. generated files created by this project.

Source Files

Page 5

2. public, platform specific files (to make sure external projects and internal files
agree.) within this project.

3. private, platform specific, files within this project.

4. public, generic (i.e. non-platform specified), files within this project.

5. private, generic, files within this project.

6. generated files created by projects upon which this project is dependent.

7. public, platform specific, files in projects upon which this project is dependent.

8. public, generic (i.e. non-platform specified), files in projects upon which this
project is dependent.

4.0 Source Files

Source code files should only ever contain implementation details for a project. There-
fore the source code files should appear in the

private

 branch of the project. As these
files, like include files, are assigned to packages with a project they too should be stored
in a sub-directory which is named after their package. These package sub-directories
can either appear as sub-directories of the

private

 directory if their contents can be
used to build code on any platform, or as sub-directories of a platform specific subdirec-
tory.

Figure 2 shows the layout the

source files that correspond to the include files specified
earlier.

FIGURE 2:

The layout of the source files that correspond to the include files specified in the text.

preston
 +---+ private
 +---- preston
 | +---- FileOne.c
 | +---- Linux-i386
 | | +---- FileThree.c
 | +---- epax10
 | +---- FileThree.c
 +---- shaun
 +---- FileFour.c
 +---- FileFive.c
 +---- epax10

 +---- FileFive.c

The standard makefile for "C" code will search for source files in the following order:

1. private, platform specific, files within this project.

2. private, generic, files within this project.

Source Files

Page 6

